Bioethanol production from rice straw residues
نویسنده
چکیده
A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L(-1).
منابع مشابه
Impact of 15N-labeled rice straw and rice straw compost application on N mineralization and N uptake by rice
Incorporation of plant residues in soil affects N and C content and dynamics. This studydetermined the effects of short-term alternative rice (Oryza sativa L.) residue management on Nmineralization and uptake by rice. Pot and laboratory incubation experiments were established byincorporating 15N-labeled rice straw and rice straw compost in paddy soil. The 15N recovered by riceaveraged 16.6%; mo...
متن کاملBioethanol production from rice straw by popping pretreatment
BACKGROUND Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the influence of popping pretreatment and determine the optimal enzyme loading using a surface response...
متن کاملThe optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw
A CO2-added ammonia explosion pretreatment was performed for bioethanol production from rice straw. The pretreatment conditions, such as ammonia concentration, CO2 loading level, residence time, and temperature were optimized using response surface methodology. The response for optimization was defined as the glucose conversion rate. The optimized pretreatment conditions resulting in maximal gl...
متن کاملEvaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor
We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chlo...
متن کاملBioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate ...
متن کامل